\(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [468]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 166 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*B*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/15*a^2*(5*A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4/5*
a^2*(5*A+4*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)
^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(2*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*
x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3039, 4102, 4081, 3872, 3856, 2719, 2720} \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(4*a^2*(5*A + 4*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(2*A + B)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*(5*A + 7*B)*Sin[c + d*x])/(15*d
*Sqrt[Sec[c + d*x]]) + (2*B*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \sec (c+d x))^2 (B+A \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{2} a (5 A+7 B)+\frac {1}{2} a (5 A+B) \sec (c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {4}{15} \int \frac {-\frac {3}{2} a^2 (5 A+4 B)-\frac {5}{2} a^2 (2 A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (2 a^2 (2 A+B)\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (2 a^2 (5 A+4 B)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (2 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (2 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.57 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {a^2 \sqrt {\sec (c+d x)} \left (20 (2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-4 i (5 A+4 B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (60 i A+48 i B+10 (A+2 B) \sin (c+d x)+3 B \sin (2 (c+d x)))\right )}{15 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*Sqrt[Sec[c + d*x]]*(20*(2*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (4*I)*(5*A + 4*B)*E^(I*(c
 + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + Cos[c + d*x]*(
(60*I)*A + (48*I)*B + 10*(A + 2*B)*Sin[c + d*x] + 3*B*Sin[2*(c + d*x)])))/(15*d)

Maple [A] (verified)

Time = 11.11 (sec) , antiderivative size = 357, normalized size of antiderivative = 2.15

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (10 A +32 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-5 A -13 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(357\)
parts \(\text {Expression too large to display}\) \(677\)

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^6+(10*A+32*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-5*A-13*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+10*
A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*A*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*B*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*B*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.13 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, B a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(2*A + B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(2*A
+ B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(5*A + 4*B)*a^2*weierstrassZe
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(5*A + 4*B)*a^2*weierstrass
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3*B*a^2*cos(d*x + c)^2 + 5*(A + 2*B)
*a^2*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a^{2} \left (\int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int 2 A \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int 2 B \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(A*sqrt(sec(c + d*x)), x) + Integral(2*A*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(A*cos(c
+ d*x)**2*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(2*B*cos(c + d*x)*
*2*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**3*sqrt(sec(c + d*x)), x))

Maxima [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \]

[In]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2,x)

[Out]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2, x)